Закономерности роста и энергетического обмена в онтогенезе моллюсков


НазваниеЗакономерности роста и энергетического обмена в онтогенезе моллюсков
страница1/4
ЗОТИН Алексей Александрович
Дата конвертации15.08.2012
Размер0,5 Mb.
ТипАвтореферат
СпециальностьБиология развития, эмбриология
Год2009
На соискание ученой степениДоктор биологических наук
  1   2   3   4
На правах рукописи

УДК 574.2: 591.1: 594.124:594.3:577.31


ЗОТИН Алексей Александрович


ЗАКОНОМЕРНОСТИ РОСТА И ЭНЕРГЕТИЧЕСКОГО ОБМЕНА В ОНТОГЕНЕЗЕ МОЛЛЮСКОВ


Специальность - 03.00.30 биология развития, эмбриология


АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора биологических наук


Москва

2009

Работа выполнена в Учреждении Российской академии наук Институт биологии развития им. Н.К. Кольцова РАН


Научный консультант:

Доктор биологических наук, профессор Николай Дмитриевич Озернюк


Официальные оппоненты:

Доктор биологических наук, профессор Всеволод Яковлевич Бродский

Доктор биологических наук, профессор Михаил Ильич Шатуновский

Доктор биологических наук, профессор Лев Владимирович Белоусов


Ведущая организация:

Государственное образовательное учреждение высшего профессионального образования "Карельский Государственный Педагогический Университет"


Защита состоится "___" ____________ 2009 г. в _______ часов на заседании диссертационного совета Д002.238.01 в Учреждении Российской академии наук Институт биологии развития им. Н.К. Кольцова РАН

по адресу: 119334 г. Москва, ул. Вавилова, д. 26;

e-mail: idbras@bk.ru;

Факс: 8-499-135-80-12;

http://idbras.comcor.ru


С диссертацией можно ознакомиться в библиотеке Учреждения Российской академии наук Институт биологии развития им. Н.К. Кольцова РАН.


Автореферат разослан "___" ____________ 2009 г.


Ученый секретарь

диссертационного совета

кандидат биологических наук Е.Б. Абрамова

ele0806@yandex.ru


ВВЕДЕНИЕ

Актуальность проблемы. Вопросы, связанные с ростом и энергетическим обменом (интенсивностью дыхания) животных всегда находились в центре внимания исследователей. Были достигнуты определенные успехи в их решении по мере разработки методов и способов количественного описания роста и взаимосвязи между энергетическим обменом и массой тела.

К настоящему времени выявлены определенные закономерности роста животных, в результате чего период эмпирического описания сменился периодом количественного анализа. Предложен целый ряд математических моделей, более или менее точно описывающих рост животных, наиболее общим из которых, на наш взгляд, следует признать уравнение роста Берталанфи (Bertalanffy, 1957). Общей чертой большинства предложенных уравнений является то, что они описывают процесс постоянного нарастания массы с возрастом животных. Многочисленные случаи стабилизации или уменьшения массы либо игнорируют, либо выводят за пределы понятия "рост", считая, что в этом случае наблюдаемый процесс следует называть иначе: деградация массы, период старения и т.п.

Несмотря на большое число исследований по росту и скорости метаболизма у животных, проблема еще далека от решения. Так, неясны закономерности роста и метаболизма в зародышевом периоде развития, область применимости аллометрической зависимости между скоростью метаболизма и массой тела, не разработана количественная теория для описания конечного типа роста, изменения скорости и интенсивности энергетического обмена в онтогенезе животных и т.д.

Следует отметить, что актуальность проблемы сильно возросла в последнее время в связи с осознанием необходимости охраны и рационального использования биоресурсов, и, соответственно, получения знаний о закономерностях и особенностях изменения потоков энергии и массы для отдельных видов животных и растений, в частности, и для экосистемы в целом. В последние 30 лет резко возросло количество исследований в этой области. В мировой и отечественной литературе появляется все большее число монографий, пытающихся обобщить накопленную информацию (Мина, Клевезаль, 1976; Шатуновский, 1980; Кулаковский, 2000; Озернюк, 2000а, б; Kooijman, 2000; Darveau et al., 2002; Glazier, 2005, 2006; Hunt von Herbing, 2005; White et al., 2006; Бызова, 2007; Katsanevakis et al., 2007).

Цели и задачи исследования. Целью настоящей работы явилось выявление закономерностей роста и энергетического обмена в онтогенезе брюхоногих и двустворчатых моллюсков; определение особенностей динамики этих процессов на ранних и более поздних этапах индивидуального развития; разработка обобщающих уравнений для количественной оценки этих процессов.

Для достижения этой цели решались следующие задачи:

1. Изучить параметры роста и энергетического обмена на разных этапах онтогенеза (в том числе, в эмбриональный и постэмбриональный периоды) и определить характер изменения этих параметров в зависимости от возраста моллюсков.

2. Проанализировать параметры роста, энергетического обмена и возраста у брюхоногих и двустворчатых моллюсков из различных природных популяций, определить характер взаимозависимостей между этими параметрами.

3. Оценить применимость аллометрической (степенной) зависимости для описания взаимосвязей между измеренными параметрами и провести сравнительный внутрипопуляционный и межпопуляционный анализ аллометрических коэффициентов.

4. Для животных с бесконечным типом роста провести расчеты коэффициентов уравнения роста Берталанфи и сравнительный анализ значений этих коэффициентов у моллюсков разных видов и популяций. Для животных с конечным типом роста вывести уравнение, описывающие такой тип роста, и определить параметры этого уравнения у разных видов моллюсков.

5. Вывести уравнение, описывающее изменение интенсивности потребления кислорода в онтогенезе моллюсков и аппроксимировать этим уравнением полученные данные.

6. Оценить полученные данные с точки зрения закономерностей роста и изменения энергетического обмена в онтогенезе моллюсков и применимости к этим процессам принципов термодинамики необратимых процессов.

Научная новизна и теоретическая значимость работы.

Впервые проведено исследование индивидуального роста и изменения энергетического обмена в онтогенезе ряда видов брюхоногих и двустворчатых моллюсков.

У большого прудовика Lymnaea stagnalis впервые показан подъем и последующий спад интенсивности стандартного обмена в зародышевом развитии.

Впервые показано наличие эндогенных колебаний удельной скорости роста у всех исследованных брюхоногих и одного вида двустворчатых моллюсков. Колебания также обнаружены для относительной скорости линейного роста и интенсивности потребления кислорода в онтогенезе L. stagnalis. Период колебательных процессов постоянен в течение всего постличиночного онтогенеза и характерен для каждого отдельного вида.

Впервые обоснованы и выведены уравнения, описывающие изменение интенсивности потребления кислорода и рост конечного типа в постличиночном онтогенезе животных. Эти уравнения хорошо аппроксимируют экспериментальные данные.

Впервые обнаружен эффект температурной компенсации для популяций брюхоногих моллюсков родов Arion и Lymnaea из разных климатических зон и отсутствие этого эффекта для рода Deroceras.

Практическая значимость работы.

Результаты работы могут оказаться полезными и быть использованными в следующих практических областях:

- охрана и воспроизводство биологических ресурсов, в том числе редких и исчезающих видов моллюсков, внесенных в Красную Книгу России (жемчужниц Margaritifera margaritifera, M. laevis, M. kurilensis);

- рациональное использование биологических ресурсов;

- сохранение биологического разнообразия в природных популяциях;

- оценка продуктивности экологических систем вообще и экосистем, в состав которых входят брюхоногие и двустворчатые моллюски, в частности;

- оценка влияния факторов среды на функционирование экосистем, как для отдельных биотопов, так и для разных климатических зон;

- разведение и культивирование практически ценных видов животных (например, мидий Mytilus edulis);

- сельскохозяйственная практика борьбы с такими вредителями сельского хозяйства, как сетчатый (Deroceras reticulatum) и полевой (D. agreste) слизни;

- преподавание курсов по биологии развития, эмбриологии, физиологии животных, зоологии беспозвоночных, биофизике.

Основные положения, выносимые на защиту.

1. Существуют два типа роста моллюсков: бесконечный и конечный. При бесконечном типе роста (все двустворчатые моллюски, водные брюхоногие моллюски) нарастание массы и линейных размеров происходит в течение всей жизни животного. При конечном типе роста (наземные брюхоногие моллюски) масса животных сначала достигает максимума, а затем постепенно уменьшается.

2. В позднем постличиночном онтогенезе моллюсков удельная скорость роста и интенсивность потребления кислорода имеют тенденцию к постоянному уменьшению, происходящему на фоне постоянных колебаний этих параметров с одинаковым видоспецифическим периодом.

3. Кинетика скорости метаболизма на ранних этапах онтогенеза не объясняется принципами термодинамики линейных необратимых процессов. Предлагается переформулировать термодинамический принцип наименьшей диссипации энергии с учетом особенностей функционирования организмов как открытых неравновесных систем.

4. Для описания роста и изменения интенсивности потребления кислорода в позднем постличиночном онтогенезе предложено использовать уравнения, выведенные на основании формул термодинамики необратимых процессов. Рост, независимо от его типа, может быть описан единым уравнением, которое в частном виде может быть сведено к уравнению роста Берталанфи.

5. Для ранних этапов онтогенеза (зародышевом, личиночном и раннем постличиночном) динамика роста и энергетического обмена имеет видоспецифический характер. Рост и изменение энергетического обмена в позднем онтогенезе происходят по общим для всех видов закономерностям в соответствии с термодинамическими законами.

Апробация работы. Основные материалы диссертации были представлены и обсуждены на следующих российских и международных конгрессах, симпозиумах, конференциях и коллоквиумах:

1. Российский междисциплинарный семинар по темпорологии. Москва. МГУ. 1997.

2. Всероссийский симпозиум «Онтогенетические, эволюционные и экологические аспекты биоэнергетики», посвященный 75 летию со дня рождения профессора А.И. Зотина (1926-2000). Москва. ИБР РАН. 2001.

3. Российский междисциплинарный семинар по темпорологии. Москва. МГУ. 2001.

4. IX международная конференция "Проблемы изучения, рационального использования и охраны ресурсов Белого моря". Петрозаводск. 2004.

5. Международная конференция "Адаптации и биоэнергетика. Онтогенетические, эволюционные и экологические аспекты", посвященная 80-летию со дня рождения проф. А.И. Зотина. Москва. ИБР РАН. 2006.

6. X Международная конференция "Проблемы изучения, рационального использования и охраны природных ресурсов Белого моря". Архангельск. 2007.

7. XI научная конференция ББС МГУ, посвященная 70-летию биостанции. ББС МГУ. Мурманская обл. 2008.

8. Twelfth International Malacological Congress. Vigo. Spain. 1995.

9. Fifth SETAC-Europe Congress. Copenhagen. Denmark. 1995.

10. XXVIII annual meeting of Western Society of Malacologists. Fairbanks. USA. 1995.

11. 62 nd Annual meeting of American Malacological Union. Chicago. USA. 1996.

Апробация диссертации состоялась "17" ноября 2008 г. на Объединенном коллоквиуме отделов эмбриологии, физиологии и цитологии Учреждения Российской академии наук Институт биологии развития им. Н.К. Кольцова РАН.

Публикации. По теме диссертации опубликовано 35 работ. Из них 20 в рецензируемых научных журналах согласно перечню ВАК России; 3 монографии; 4 статьи в зарубежных изданиях; 5 статей в рецензируемых изданиях и 3 авторских свидетельства.

Структура и объем работы. Диссертация состоит из следующих разделов: 1. Введение. 2. Обзор литературы. 3. Материалы и методы (из 9 подразделов). 4. Результаты (из 2 глав и 6 подразделов). 5. Обсуждение. 6. Выводы. 7. Список литературы. Работа содержит 337 страниц текста, документирована 47 рисунками и 51 таблицами. Список литературы содержит 624 источников, из них 371 на иностранных языках.

3 МАТЕРИАЛЫ И МЕТОДЫ

3.1 Объекты.

Всего изучен 21 вид моллюсков. Из них 14 видов брюхоногих моллюсков (класс Gastropoda): Lymnaea stagnalis L., L. auricularia L. (сем. Lymnaeidae) Deroceras reticulatum Müller, D. agreste L. (сем. Agriolimacidae), Arion subfuscus Draparnaud, A. fasciatus Nilsson (сем. Arionidae), Trichia hispida L., T. concinna Jeffreys (сем. Hygromiidae), Bradybaena fruticum Muller, B. schrencki Middendorff (сем. Bradybaenidae). Cochlodina laminata Montagu, Macrogastra ventricosa Draparnaud (сем. Clausiliidae), Littorina littorea L., L. saxatilis Olivi (сем. Littorinidae); и 7 видов двустворчатых моллюсков (класс Bivalvia): Anodonta anatina L., Unio pictorum L., U. tumidus Pfill et Retz (сем. Unionidae), Margaritifera margaritifera L., M. laevis Haas, M. kurilensis Zatrawkin et Starobogatov (сем. Margaritiferidae), Mytilus edulis L. (сем. Mytilidae).

Общее количество изученных животных составило 5996 особей.

3.2 Исследование зародышевого развития Lymnaea stagnalis.

Кладки L. stagnalis собирали в сентябре-октябре 2004 г. и культивировали в чашках Петри в отстоянной водопроводной воде при 18С. Всего исследовано 14 кладок (от 45 до 143 зародышей на кладку). Измерение скорости потребления кислорода зародышами проводили для каждой кладки отдельно при 18C ежедневно (кроме субботы и воскресенья) с помощью полярографического газоанализатора OP-215 ("RADELKIS", Венгрия) в течение 5-6 ч. Размеры зародышей определяли с помощью окуляр-микрометра.

3.3 Исследование личиночного развития Margaritifera margaritifera.

Стадию развития паразитирующих личинок (глохидиев) определяли на гистологических срезах лепестков жабр, окрашенных гематоксилином и эозином, на разные сроки после инвазии.

Размеры определяли с помощью окуляр-микрометра на препаратах взвеси глохидиев в воде (для свободных личинок) и на тотальных препаратах жаберных лепестков инвазированных рыб после осветления глицерином (для паразитирующих личинок).

3.4 Исследование постличиночного онтогенеза Lymnaea stagnalis.

Только что вылупившихся моллюсков содержали в группах (до 20 экземпляров), составленных из особей приблизительно одного размера в пластиковых стаканчиках объемом 100 мл при 18С, а по достижению ими возраста 2 мес. - поодиночке в пластиковых стаканчиках объемом 500 мл при 18С. Размеры животных (высоту L и ширину H раковины) измеряли под бинокулярной лупой с помощью окуляр-микрометра, если высота раковины не превышала 5 мм, в противном случае - с помощью штангенциркуля с точностью 0.1 мм.

Точность измерения массы составляла 1 мг для животных, вес которых не превышал 250 мг, и 10 мг для животных большего размера.

Скорость потребления кислорода определяли методом Варбурга (см. раздел 3.8).

3.5 Культивирование и определение параметров роста наземных гастропод отряда Stylommatophora.

Наземных гастропод разных видов собирали в различных биотопах и культивировали в лабораторных условиях индивидуально в пластиковых стаканчиках объемом 100 мл при комнатной температуре и влажности 80-100%. Измерения проводили 1 раз в неделю для слизней рода Deroceras и 1 раз в 2 недели - для остальных видов улиток вплоть до гибели моллюсков. Точность измерения массы составляла 1 мг для животных, вес которых не превышал 250 мг, и 10 мг для животных большего размера.

Таблица 1. Условия среды при предварительной акклимации и в процессе измерения скорости потребления кислорода для разных видов моллюсков

Вид

tС

Время акклимации

Условия среды: при акклимации /

в процессе измерения

Lymnaea stagnalis

18

С момента вылупления

Отстоянная водопроводная вода /

Воздушная среда, влажность 80-100%

L. auricularia

20

2-3 сут.

Речная вода / то же

Виды отряда

Stylommatophora

20

2-3 сут.

Воздушная среда, влажность 80-100% /

то же

Виды семейства

Littorinidae

20

2-3 сут.

Аэрированная морская вода / то же или

воздушная среда, влажность 80-100%

Виды семейства

Margaritiferidae

14

1-2 мес.

Деионизированная вода с концентрацией солей 50 мг/л / то же

Mytilus edulis

20

2-3 сут.

Аэрированная морская вода / то же


3.6 Определение возраста двустворчатых моллюсков.

Возраст двустворчатых моллюсков определяли путем подсчета годовых колец на поверхности раковины. В тех случаях, когда часть годовых колец не детектировалась из-за коррозии призматического слоя, использовали приближенный метод подсчета возраста с помощью аппроксимации длин последовательных годовых колец уравнением Берталанфи.

3.7 Измерение параметров роста двустворчатых моллюсков.

Определяли следующие параметры, характеризующие рост двустворчатых моллюсков. Промеры массы: общая масса моллюска; масса мягких тканей; масса раковины. При определении массы мягких тканей перед взвешиванием тело моллюска извлекали из раковины и удаляли мантийную жидкость с помощью фильтровальной бумаги. Точность измерения составляла 1 мг, если значение массы не превышало 250 мг, и 10 мг - в противном случае. Стандартные линейные промеры раковины: длина раковины (L) - максимальное расстояние между передним и задним краями; ширина раковины (H) - максимальное расстояние между спинным и брюшным краями; выпуклость (B) - максимальное расстояние между створками. При исследовании индивидуального линейного роста двустворчатых моллюсков проводили измерение длин последовательных годовых колец на поверхности раковины. Линейные размеры измеряли с помощью штангенциркуля с точность 0.1 мм.

3.8 Определение скорости потребления кислорода.

Скорость потребления кислорода во всех случаях, кроме исследования зародышевого развития Lymnaea stagnalis (см. раздел 3.2), определяли с помощью манометрического метода Варбурга (Умбрейт и др., 1951). Перед измерением скорости потребления кислорода проводили предварительную акклимацию животных к условиям эксперимента (разным для разных видов моллюсков) (табл. 1).

Расчет количества потребленного кислорода проводили у L. stagnalis для 18С, в остальных случаях - для 20С. При необходимости производили перерасчет на 20С по нормальной кривой Крога: Q20 = Qt exp(0.081(t-20)), Q20 и Qt - скорость потребления кислорода при температуре 20С и t соответственно.

3.9 Методы обработки и описания данных.

Основным способом описания полученных кривых роста, скорости и интенсивности потребления кислорода было использование сглаживающих кубических сплайнов, позволившее не только определить основные тенденции изменения параметров, но и оценить скорость исследуемых процессов. Удельную скорость весового роста (dM/Mdt) и относительную скорость линейного роста (dL/Ldt) рассчитывали путем деления величин скоростей на значения массы или линейных размеров соответственно, полученных в процессе обработки данных с помощью кубических сплайнов. Аппроксимацию экспериментальных данных проводили с помощью ряда уравнений.

Зависимость между измеренными параметрами аппроксимировали аллометрическим уравнением вида:

Y = aXk, (1)

Y, X - параметры, a, k - коэффициенты.

Рост животных бесконечного типа аппроксимировали уравнением Берталанфи:

, (2)

M - параметр роста; t - возраст животного; M, kg, t0, u - коэффициенты;

или его рекуррентной формой (уравнение Форда-Волфорда):

Mt+m1/u = c Mt1/u + d, (3)

Mt - параметр роста в момент времени t; Mt+m - параметр роста в момент времени t+m; m - промежуток времени между последовательными промерами; u - константа из уравнения Берталанфи (2).

Для аппроксимации данных по изменению интенсивности потребления кислорода в онтогенезе моллюсков было выведено собственное уравнение (см. разделы 4.4.2 и 4.4.3)

Данные по изменению массы, полученные на моллюсках с конечным типом роста также аппроксимировали собственным уравнением роста (см. раздел 4.5):

Для уравнений, сводимых к линейной форме (уравнения 1, 3 и 6), проводили оценку пригодности их применения для описания экспериментальных данных с помощью критериев нелинейности (Хальд, 1956; Урбах, 1964) и криволинейности (Плохинский, 1961).

Определение коэффициентов линейных уравнений и их сравнение проводили с помощью методов регрессионного анализа (Хальд, 1956; Урбах, 1964).

Для аппроксимации экспериментальных данных нелинейными уравнениями (уравнения 2, 4, 5) использовали программу Matlab (версия 7.3.0.267; The MathWorks, Inc, США).


4 РЕЗУЛЬТАТЫ

  1   2   3   4

Разместите кнопку на своём сайте:
поделись


База данных защищена авторским правом ©dis.podelise.ru 2012
обратиться к администрации
АвтоРефераты
Главная страница