«Роль опорной афферентации в поддержании скоростно-силовых свойств и выносливости антигравитационных мышц»




Скачать 245.91 Kb.
Название«Роль опорной афферентации в поддержании скоростно-силовых свойств и выносливости антигравитационных мышц»
страница2/3
Хуснутдинова Диляра Рустэмовна
Дата конвертации25.08.2012
Размер245.91 Kb.
ТипАвтореферат
СпециальностьФизиология
Год2007
На соискание ученой степениКандидат медицинских наук
1   2   3


Процедура исследований

Скоростно-силовые свойства и утомление мышц голени определяли с использованием измерительного комплекса BIODEX System 3 Pro (США). Тестирования проводили за 7, 3 суток до и в первый же день после окончания модельного воздействия. Регистрируемые и анализируемые параметры представлены в таблице 2.

Объектом исследования явилась трехглавая мышца голени, состоящая из мышц – икроножной (латеральная и медиальная головки) и камбаловидной,. Икроножная мышца является смешанной (фазно-тонической), а камбаловидная – медленной (тонической), что обуславливает ее антигравитационные свойства. Для изучения влияний опорной нагрузки разгрузки на сократительные свойства различных головок трехглавой мышцы голени исследование проводили в трех позициях, различающихся положением углов в коленном суставе: 180, 120, 90 угл./º. Для определения вклада двусуставной (икроножной) и односуставной (камбаловидной) мышц в общее усилие трехглавой мышцы голени, применяли метод тестирования скоростно-силовых свойств в положениях, различавшихся величиной угла в коленном суставе - 180, 120, 90 угл./. При угле 180 градусов икроножная мышца максимально растянута, при угле 90 градусов - максимально укорочена и соответственно ее вклад суммарное усилие, развиваемое трехглавой мышцей голени минимален, а развиваемая сила обеспечивается преимущественно камбаловидной мышцей.

Скоростно-силовые возможности трехглавой мышцы голени определяли в изокинетическом концентрическом режиме при угловых скоростях 150/сек, 90/сек, 30/сек, начиная с высокоскоростного диапазона (150º/сек.). На каждой угловой скорости выполнялось 3 попытки. В ходе тестирования тестирования испытуемые по сигналу выполняли сгибание и разгибание стопы в голеностопном суставе согласно инструкции выполнить усилие «максимально быстро и сильно». Разгибание осуществлялось из положения с максимально приведенным к себе носком, а сгибание - из положения с максимально отведенным носком.


Табл.2. Регистрируемые и анализируемые параметры


Тесты

Положение угла в коленном суставе

Регистрируемые параметры

Анализируемые параметры

Скоростно-силовое тестирование в изокинетическом режиме на угловых скоростях

150, 90, 30 º/сек.

180º

120º

90º

Момент силы,

ЭМГ

-Max

-Время (t) до Mmax

-Amax интегрированной ЭМГ

-Скорость достижения Mmax (Mmax / t)

-Коэффициент электромеханической эффективности (Amax / Mmax)

30-секундный тест на утомление в изометрическом режиме

120º

90º

Момент силы

-Площадь под механограммой момента силы нормированная на максимальный момент силы



Амплитуда движения при этом составляла не менее 50 угловых градусов (º). Для исключения влиянии предшествующего растяжения на последующее сокращение, после завершения фазы разгибания, выдерживалась 7-секундная пауза, затем выполнялось сгибание. Время отдыха между отдельными попытками составляло не менее 15 с, между отдельными тестами (угловая скорость, нагрузка) не менее 45 с. Указанные интервалы отдыха являлись достаточными для устранения эффектов утомления от предшествующих тестовых процедур. Параллельно с определением момента силы регистрировали поверхностную ЭМГ икроножной, камбаловидной и передней большеберцовой мышц. Отведение биопотенциалов осуществляли с использованием биполярных поверхностных хлорсеребряных электродов фирмы «3М» (Германия), с межэлектродным расстоянием 20 мм. Перед наложением электродов, для снижения сопротивления кожи, ее поверхность тщательно очищали с использованием абразивных материалов и этилового спирта. Электроды наклеивались в проекции соответствующих мышечных головок. Земельный электрод накладывали на нерабочую ногу. Электромиографический сигнал усиливался с помощью усилителя Grass P 511 (США), с частотой пропускания от 10 Гц до 3 кГц. Сигнал, записываемый на компьютер через автоматический цифровой преобразователь с частотой 5 кГц, инвертировали и сглаживали с шагом 25 миллисекунд.

Анализируемые параметры

Оценивались максимальные моменты силы наилучшей из трех попыток и соответствующие им вспышки интегрированной электромиограммы. Анализировались максимальный момент силы; время достижения максимального момента силы; скорость нарастания усилия, рассчитанная как отношение максимального момента силы к времени достижения максимального момента силы; максимальному амплитуда ЭМГ-ответа, электромеханическую стоимость усилия рассчитанную как отношение максимальному амплитуды ЭМГ-ответа к максимальному моменту силы.

Тест на утомление выполнялся в изометрическом режиме. Исходные углы в голеностопном суставе при выполнении движения разгибания составляли 75 град, а для сгибания – 105 град. По условиям теста испытатель в течение 30 секунд выполнял разгибание или сгибание стопы, с максимальным усилием. Анализируемым показателем в данном тесте была площадь под механограммой момента силы, нормированная по максимальному моменту силы.

    Статистическая обработка

    Определение достоверных различий между группами и от исходного уровня производилось с использованием однофакторного дисперсионного анализа (ANOVA one way). Критерием значимости считался уровень – 0.05.

    Результаты исследований и их обсуждение

Пребывание в условиях микрогравитации сопровождалось закономерно изменением мышечных свойств разгибателей и сгибателей голени. Эти изменения проявлялись снижением скоростно-силовых характеристик произвольных усилий в изокинетическом режиме, статической выносливости, уменьшением скорости нарастания произвольных усилий, увеличением электромеханической стоимости усилий. Выраженность изменений в разгибателях голени была существенно большей, чем в сгибателях.

Применение специально разработанной методики раздельного тестирования скоростно-силовых свойств трехглавой мышцы голени (ТМГ) в целом и камбаловидной мышцы (КМ) преимущественно, позволило сравнить глубину и скорость развития изменений в указанных мышцах. Результаты тестирования с применение этой методики показали, что наиболее чувствительной к гравитационной разгрузке является камбаловидная мышца. Уже к третьим суткам пребывания в «сухой» иммерсии (СИ) моменты усилий ТМГ были снижены во всем тестируемом диапазоне угловых скоростей. При этом в КМ выраженность изменений была существенно большей, чем в ТМГ в целом (рис.1).



Рис. 1. Изменение момента силы ТМГ после 3-суточной иммерсии. Обозначения: светлые столбцы - изменения в ТМГ в целом, темные – в КМ преимущественно. По оси абсцисс угловая скорость движения (град/сек) по оси ординат – величина изменения момента силы в %. Значения усилия до иммерсии приняты за 0. Вертикальные линии – стандартные ошибки среднего, звездочки – достоверность изменений при р<0,05.


Данная закономерность была справедлива и для такого показателя, как скорость нарастания усилия, сниженная во всем диапазоне угловых скоростей, и также более выраженная в камбаловидной мышце (рис.2).



Рис. 2. Изменение скорости нарастания усилия ТМГ голени после 3-суточной иммерсии. Обозначения: светлые столбцы - изменения в ТМГ в целом, темные – в КМ преимущественно. По оси абсцисс- угловая скорость движения (град/сек), по оси ординат – величина изменения скорости нарастания усилия в %. Значения скорости нарастания усилия до иммерсии приняты за 0. Вертикальные линии – стандартные ошибки среднего, звездочки – достоверность изменений при р<0,05.

Тест на утомление не выявил изменений в трехглавой мышце голени после трех суток пребывания в иммерсии, в то же время в камбаловидной мышце этот показатель выносливости был достоверно снижен (рис.3).



Рис. 3. Изменение выносливости ТМГ после 3-суточной иммерсии Обозначения: светлые столбцы - изменения вТМГ в целом, темные – в КМ преимущественно. По оси ординат – величина изменения выносливости в %. Значения выносливости до иммерсии приняты за 0. Вертикальные линии – стандартные ошибки среднего, звездочки – достоверность изменений при р<0,05.


В передней большеберцовой мышце изменения после трех суток иммерсии имели лишь характер тенденции.

Следует отметить, что у двух их девяти испытуемых группы «иммерсия», трехдневное пребывание в иммерсии не сопровождалось изменениями сократительных свойств мышц голени, что могло быть результатом недостаточно корректного выполнения в фоновом исследовании максимального усилия.

После 7 суток пребывания в иммерсии уровень мышечных потерь был значительно более выражен. Еще большими были при этом различия в снижении сократительных свойств ТМГ в целом и КМ преимущественно. В ТМГ снижение скоростно-силовых свойств было несущественным и выявлялось в основном в высокоскоростном диапазоне, в то время как в КМ изменения были существенными, составляя в среднем 20% .



Рис. 4. Изменение момента силы ТМГ после 7-суточной иммерсии. Обозначения: светлые столбцы - изменения в ТМГ в целом, темные – в КМ преимущественно. По оси абсцисс угловая скорость движения (град/сек) по оси ординат – величина изменения момента силы в %. Значения усилия до иммерсии приняты за 0. Вертикальные линии – стандартные ошибки среднего, звездочки – достоверность изменений при р<0,05.


Электромеханическая стоимость усилия КМ после 7-суток иммерсионного воздействия возросла во всем диапазоне угловых скоростей вдвое больше, чем в икроножной мышце (ИМ) (рис.5), увеличилась также ее утомляемость.





Рис. 5. Изменение электромеханической стоимости усилия ТМГ после 7-суточной иммерсии (светлые столбцы - изменения в ИМ, темные – КМ). По оси абсцисс угловая скорость движения (град/сек) по оси ординат – величина изменения электромеханической стоимости усилия в %. Значения электромеханической стоимости усилия до иммерсии приняты за 0. Вертикальные линии – стандартные ошибки среднего, звездочки – достоверность изменений при р<0,05.


В передней большеберцовой мышце (ПБМ) после семисуточной иммерсии изменения были менее выражены, чем в ТМГ и отличались большой вариативностью.

Таким образом, результаты данного исследования, выявили в условиях микрогравитации достоверно большую выраженность изменений сократительных свойств тонической камбаловидной мышцы, нежели икроножной. Эти данные коррелировали с данными морфологических исследований, выявивших большую выраженность структурных и атрофических изменений в камбаловидной мышце в более поздние сроки адаптации к невесомости [Y.Ohira, 1992; Shenkman B.S. 1999].

Особенностью развития изменений сократительных свойств мышц голени в иммерсии являлась высокая скорость их развития: уже к 3 суткам иммерсионного воздействия, снижение силы сокращений, скорости нарастания усилия, выносливости в КМ достигали достоверных значений. К 7 суткам иммерсионного воздействия уровня достоверности достигали также изменения скоростно-силовых свойств в ТМГ в целом. Существенно менее выраженными оставались в этот период изменения сократительных свойств передней большеберцовой мышце (ПБМ).

В условиях постельной гипокинезии, эксперименте АНОГ -6º изменения скоростно-силовых свойств мышц голени на 7-е сутки воздействия не достигали достоверных отличий от фона. Снижение момента силы камбаловидной мышцы на 7 сутки АНОГ во всем тестируемом диапазоне угловых скоростей были вдвое меньшим, нежели в 7-суточной иммерсии. Аналогичными были и различия в величинах снижения скорости нарастания усилия. В ПБМ изменение сократительных свойств оставалось лишь на уровне тенденции, едва превышая -5% (рис.6).



Рис. 6. Изменение момента силы мышц голени после 7-суточной АНОГ -6º при положении угла в коленном суставе 90º. Светлые столбцы - изменения в КМ преимущественно, темные – ПБМ. По оси абсцисс угловая скорость движения (град/сек) по оси ординат – величина изменения момента силы в %. Значения усилия до иммерсии приняты за 0. Вертикальные линии – стандартные ошибки среднего, звездочки – достоверность изменений при р<0,05.


Как уже указывалось раньше, рассматриваемые две модели микрогравитации различаются степенью опорной разгрузки. В иммерсии, как и в невесомости, имеет место полное устранение опоры, в АНОГ-6º при прочих равных условиях удельная сила реакции опоры, будучи перераспределена со стоп на другие поверхности тела уменьшена, но не устранена полностью. Таким образом, результаты сравнительного анализа эффектов двух указанных модельных воздействий полностью укладывается в представление о важной роли опорной разгрузки в развитии изменений сократительных свойств на ранних этапах адаптации к микрогравитации.

Однако существенно более важные доказательства ведущей роли опоры в поддержании скоростно-силовых свойств антигравитационых мышц были получены в исследованиях с применением механостимуляции опорных зон стопы в условиях опорной разгрузки.

Ранее, другими авторами уже предпринимались попытки исследования эффектов опорной стимуляции в условиях космического полета. В эксперименте «Суппорт», выполнявшимся по научной Российско-Кубинской программе, механостимуляция опорных зон стопы, обусловила сохранение сократительных свойств мышц голени, а также меньшую выраженность других двигательных нарушений [N.Bachl, Layne, E.Korvo, 1883]. В Рсоссийско-Американском эксперименте, C.S.Layne с коллегами (1998) на борту станции «МИР» исследовали влияние механостимуляции опорных зон стопы на характеристики позных реакций, обеспечивающих в условиях Земли сохранение вертикальной устойчивости при выполнении произвольных движений. Утрачиваемая в невесомости предваряющая позная активность восстанавливалась при стимуляции опорных зон стопы. Результаты этих единичных экспериментов указывали на возможность компенсации двигательных эффектов опорной разгрузки с помощью механостимуляции опорных зон стопы. Проведенные нами исследования полностью подтвердили это предположение.

Применение КОР в 3-суточной «сухой» иммерсии существенно уменьшало уровень потерь сократительных свойств трехглавой мышцы голени. При этом, профилактический эффект был более выраженным в камбаловидной мышце (КМ) преимущественно чем в трехглавой мышцы голени (ТМГ) в целом (рис. 7).



Рис. 7. Изменение момента силы КМ преимущественно после 3-суточной иммерсии. Светлые столбцы - изменения в группе «иммерсия», темные – в группе «иммерсия+КОР». По оси абсцисс угловая скорость движения (град/сек) по оси ординат – величина изменения момента силы в %. Значения усилия до иммерсии приняты за 0. Вертикальные линии – стандартные ошибки среднего, звездочки – достоверность изменений при р<0,05.

В ходе иммерсии, при использовании механостимуляции опорных зон стоп, существенно меньшими были изменения скорости нарастания усилия, утомляемости и электромеханической стоимости усилия.

Применение компенсатора опорной разгрузки (КОР) в 7-суточной иммерсии обусловило не только сохранение, но и некоторый прирост моментов силы (рис.8) и скорости нарастания усилия (рис.9), а также снижению электромеханической стоимости выполняемого усилия (рис. 10).





Рис. 8. Изменение момента силы КМ преимущественно после 7-суточной иммерсии. Светлые столбцы - изменения в группе «иммерсия», темные – в группе «иммерсия+КОР». По оси абсцисс угловая скорость движения (град/сек) по оси ординат – величина изменения момента силы в %. Значения усилия до иммерсии приняты за 0. Вертикальные линии – стандартные ошибки среднего, звездочки – достоверность изменений при р<0,05.




Рис. 9. Изменение скорости нарастания усилия КМ преимущественно после 7-суточной иммерсии. Светлые столбцы - изменения в группе «иммерсия», темные – в группе «иммерсия+КОР». По оси абсцисс угловая скорость движения (град/сек) по оси ординат – величина изменения скорости нарастания усилия в %. Значения скорости нарастания усилия до иммерсии приняты за 0. Вертикальные линии – стандартные ошибки среднего, звездочки – достоверность изменений при р<0,05.



Рис. 10. Изменение электромеханической стоимости усилия трехглавой мышцы голени после 7-суточной иммерсии. Светлые столбцы - изменения в группе «иммерсия», темные – в группе «иммерсия+КОР». По оси абсцисс угловая скорость движения (град/сек) по оси ординат – величина изменения электромеханической стоимости усилия в %. Значения электромеханической стоимости усилия до иммерсии приняты за 0. Вертикальные линии – стандартные ошибки среднего, звездочки – достоверность изменений при р<0,05.


Таким образом, результаты проведенных экспериментов подтвердили и расширили представления о ведущей роли опорной разгрузки в контроле сократительных свойств антигравитационных (тонических) мышц, показав, что

устранение опоры инициирует снижение скоростно-силовых свойств и выносливости мышц голени, а механостимуляция опорных зон стоп в условиях микрогравитации предотвращает эти явления. Применение в исследованиях методики раздельного тестирования ТМГ в целом и КМ преимущественно позволило показать, что как те, так и другие эффекты четко коррелировали с гравитационной зависимостью мышц, будучи наибольшими в камбаловидной мышце (антигравитационной) и наименьшими в передней большеберцовой. Изменение скоростно-силовых свойств мышц голени в условиях опорной разгрузки выявляли четкую зависимость также от степени опорной разгрузки, достигая максимальных значений в условиях 7-суточной иммерсии и оставаясь минимальными в условиях 7-суточной АНОГ, где опора перераспределяется по поверхностити, но не устраняется полностью. Следует отметить, при этом, что в 7-суточной иммерсии степень изменения сократительных свойств ТМГ существенно превосходила степень изменений структуры мышечных волокон, выявленные в этих же экспериментах Б.С. Шенкманом и сотр. (2004). В нашем исследовании, как и в ранее упоминавшихся исследованиях Г.И. Гевлич и Л.С. Григорьевой с соавт. (1983), динамика развития и выраженность изменений сократительных свойств тонических мышц в условиях опорной разгрузки и при использовании механостимуляции в условиях опорной разгрузки тесно коререлировала с обнаруженным в том же эксперименте снижением поперечной жесткости исследуемых мышц [Т.Ф.Миллер и соавт., 2004]. Полученные данные подтверждают справедливость предположений о рефлекторных механизмах снижения сократительных свойств антигравитационных мышц на ранних этапах адаптации к невесомости, обуславливаемых снижением мышечного тонуса .

1   2   3

Разместите кнопку на своём сайте:
поделись


База данных защищена авторским правом ©dis.podelise.ru 2012
обратиться к администрации
АвтоРефераты
Главная страница